If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2+30y=0
a = 10; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·10·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*10}=\frac{-60}{20} =-3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*10}=\frac{0}{20} =0 $
| 16=8(v+8)+8v | | 2n+4=3n+10 | | -16=5(x-2)-3x | | 13n−–15n−–17=–11 | | x-1.034=18.5 | | d+10=–8−5d | | 8-3y+3y=8 | | 15y+y=256 | | 7+8v=7v | | 5x-19=-8(x+4) | | 6=-2w+6(w+5) | | 207x+32=25x | | X+(5.2×x)=31 | | 5x+32=25x | | x3−34=3x+812 | | -3q^2+2=-5q | | -30=-12t-4.9t^2 | | 4.c=32 | | 14x=3x+9 | | 10+6n=n+5 | | -17x+5x=224 | | 2x-9x-8=18 | | 3^4x=27^x-3 | | 11x+0=-33 | | 12x-(5x-12)=4+6x | | 12x-95x-120=4+6x | | 4-(1+x)=17 | | 2w^2-5w=-2 | | 25-44gg=-3 | | 12x-(5x-12=4+6x | | -0.5x+4=1.25x | | 3x+75+4x+18=180 |